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Abstract—Automating the Extract Method refactoring (EMR)
remains challenging and largely manual despite its importance
in improving code readability and maintainability. Recent ad-
vances in open-source, resource-efficient Large Language Models
(LLMs) offer promising new approaches for automating such
high-level tasks. In this work, we critically evaluate five state-of-
the-art open-source LLMs, spanning 3B to 8B parameter sizes,
on the EMR task for Python code. We systematically assess
functional correctness and code quality using automated metrics
and investigate the impact of prompting strategies by comparing
one-shot prompting to a Recursive criticism and improvement
(RCI) approach. RCI-based prompting consistently outperforms
one-shot prompting in test pass rates and refactoring quality.
The best-performing models, Deepseek-Coder-RCI and Qwen2.5-
Coder-RCI, achieve test pass percentage (TPP) scores of 0.829
and 0.808, while reducing lines of code (LOC) per method from
12.103 to 6.192 and 5.577, and cyclomatic complexity (CC) from
4.602 to 3.453 and 3.294, respectively. A developer survey on
RCI-generated refactorings shows over 70% acceptance, with
Qwen2.5-Coder rated highest across all evaluation criteria. In
contrast, the original code scored below neutral, particularly
in readability and maintainability, underscoring the benefits
of automated refactoring guided by quality prompts. While
traditional metrics like CC and LOC provide useful signals,
they often diverge from human judgments, emphasizing the need
for human-in-the-loop evaluation. Our open-source benchmark
offers a foundation for future research on automated refactoring
with LLMs.

Index Terms—Extract Method, LLM, Open-Source, Code,
Automated Refactoring, DeepSeek, Qwen

I. INTRODUCTION

Automated code refactoring is a foundational Software
Engineering (SE) practice that improves code readability [1],
maintainability [2], and long-term evolution [3], [4]. Among
refactoring techniques, the Extract Method is one of the
most frequently applied in both industry and open-source
development and impactful, enabling developers to modularize
complex code, reduce duplication, and clarify program struc-
ture [3], [5]. This technique, whereby developers decompose
long or complex functions into smaller, well-named methods,
directly targets the “long method” code smell, a persistent
source of defects and maintenance challenges [5], [6]. By
isolating logically coherent fragments of code, the Extract
Method improves modularity, supports better testing, and sim-
plifies future code evolution. However, despite its importance,
the EMR process remains manual, mainly reliant on rule-based
tools with limited flexibility and adaptability [6]–[8].

The recent rise of LLMs, particularly those capable of
code understanding and generation, has catalyzed new re-
search in automated code transformation [9]–[11]. While
proprietary LLMs such as OpenAI’s Codex and GPT-4 have
shown promise in code-related tasks [10], [12], [13], the
rapid advancement of open-source LLMs has made high-
quality, accessible, and transparent models available to both
researchers and practitioners [14]–[17]. The ability of open-
source models to automate nuanced software engineering tasks
like EMR remains largely unevaluated. Unlike code synthesis,
EMR demands that LLMs understand existing code, extract
cohesive fragments, preserve functionality, and generate clear
method names consistent with the codebase. Another open
question is how best to interact with LLMs for these tasks.
Prompt engineering is now recognized as a crucial deter-
minant of LLM performance [18], yet the specific impact
of advanced prompting strategies, such as recursive criticism
and improvement (RCI), on automated refactoring outcomes
remains underexplored.

The SE community traditionally evaluates refactoring
through quantitative metrics, such as cyclomatic complexity
(CC) [19]–[22] and lines of code (LOC) [21]–[24]. However, it
is increasingly evident that these metrics do not always reflect
what human developers perceive as high-quality or acceptable
refactoring [25]–[27]. This disconnect raises essential ques-
tions about properly evaluating automated refactoring tools,
especially those powered by LLMs.

This paper addresses this specific gap by providing a sys-
tematic, human-centered understanding of the extent to which
open-source LLMs can perform EMR. We compare five state-
of-the-art open-source LLMs, focusing on efficient models to
run on commonly available hardware [12], [15], [17], [28]. We
investigate the impact of the prompting strategy, contrasting
one-shot prompting with an RCI method [18], and evaluate
the results using quantitative code metrics and a qualitative
developer survey.

The models that demonstrate the best performance are
Deepseek-Coder-RCI and Qwen2.5-Coder-RCI. These models
achieve EM TPP scores of 0.829 and 0.808, respectively,
while concomitantly reducing code length from 12.103 LOC
to 6.192 and 5.577, and code complexity from 4.602 CC to
3.453 and 3.294, respectively. Our findings reveal that the
prompting strategy substantially impacts refactoring success



and code quality and that traditional metrics often diverge from
human acceptance of refactoring outcomes. Importantly, we
demonstrate that when properly prompted, open-source LLMs
can produce EMRs that developers accept in over 70% of
cases, signaling their readiness for real-world adoption.

By releasing our benchmarking pipeline, we aim to foster
reproducible, community-driven progress in automated refac-
toring research and practice.1 Our key Contributions include:

1) Benchmarking Open-Source LLMs: First systematic
evaluation of five 3B–8B open-source models on the EMR
task for Python.

2) Prompting Strategies: Comparison of one-shot vs. RCI,
showing RCI significantly boosts refactoring success.

3) Evaluation Methods: Combined automated metrics (e.g.,
TPP, CC, LOC) with developer survey, revealing divergences
between metrics and human judgment.

4) Practical Viability: Demonstrated that properly prompted
open-source models achieve > 70% developer acceptance on
commodity hardware.

II. RELATED WORK

Traditional EMR Tools: EMR has long been used to
improve code clarity, reduce duplication, and enhance main-
tainability. Traditional EMR tools are rule-based, using deter-
ministic patterns and syntactic heuristics to extract cohesive
code blocks into methods.

Early work, such as [29], laid the foundation for rule-based
EMR by applying predefined transformation templates to sup-
port framework evolution and component reuse. Mainstream
tools like Eclipse JDT, IntelliJ IDEA, and Ref-Finder continue
to offer EMR capabilities based on static code analysis.
However, as [30] observed, these tools often struggle with
semantically complex or context-sensitive code segments. To
address modularity in legacy systems, [31] combined aspect
mining with rule-based EMR, enabling the clean separation of
cross-cutting concerns. Similarly, [32] integrated EMR into a
multi-objective rule-based framework to support higher-level
design transformations. [33] incorporated transparent decision
paths for rule-based EMR suggestions, enhancing developer
trust and tool adoption.

[34] classified EMR techniques, noting that rule-based
variants are reliable in static scenarios but inflexible in dy-
namic or behavior-driven contexts. In contrast, [35] proposed a
just-in-time, clone-aware EMR tool that operates continuously
during development. [36] described rule-based EMR strategies
as low-risk and predictable, making them particularly valuable
in industrial software maintenance. However, they noted that
such approaches trade adaptability for reliability compared to
modern AI-driven alternatives.

Large Language Models for Automated Refactoring: The
emergence of LLMs trained on massive code corpora is shift-
ing code refactoring into a data-driven, AI-powered process.
Early models such as OpenAI’s Codex [37] and, StarCoder
[9], followed by open-source alternatives like Code Llama

1https://figshare.com/s/8f242ba2a071198eb4eb

[15], DeepSeek-Coder [17], and Qwen2.5-Coder [16], have
demonstrated impressive capabilities in code completion and
generation. Standard benchmarks like HumanEval [10] and
EvalPlus [38] have accelerated comparative research in this
domain.

Recent work has begun to investigate the use of LLMs
for automated refactoring. Shirafuji et al. [25] explored few-
shot prompting with GPT-3.5 for various refactoring tasks,
achieving measurable code size and complexity reductions.
Choi et al. [39] extended this idea, proposing iterative LLM-
based refactoring strategies combined with regression testing
for validation. Pomian et al. [40] have shown that LLMs
can support EMR, using GPT-3.5, integrated directly into
development environments for real-time developer assistance.
In contrast, our study focuses on benchmarking open-source,
resource-efficient LLMs (3B–8B) on commodity hardware,
relying exclusively on prompting-only strategies. Rather than
hybridizing LLMs with auxiliary tools or retrieval components,
we aim to identify which small-scale model performs best
under constrained settings. Notably, the best-performing model
from our benchmark could serve as a foundation for future
hybrid approaches, including those proposed by Pomian et al.

Despite these advances, most existing studies focus on
proprietary or large-scale LLMs (e.g., GPT-3.5, GPT-4), which
may be inaccessible or impractical for many organizations.
Furthermore, the impact of prompt engineering, particularly
advanced strategies like RCI [4], on LLM-driven refactoring
outcomes remains underexplored.

Our work addresses these gaps by systematically bench-
marking state-of-the-art open-source LLMs on the EMR task,
rigorously comparing prompting techniques, and incorporating
automated metrics and human developer feedback.

III. METHODOLOGY

Our goal is to systematically benchmark open-source LLMs
for automated EMR in Python. We constructed an end-to-
end evaluation pipeline that incorporates dataset sampling,
preprocessing, prompt generation, LLM inference, automated
correctness checks, and metric extraction. The experimental
workflow adopted in this study is illustrated in Figure 1.
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Fig. 1: Workflow diagram
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A. Pipeline

As shown in Figure 1, our experimental pipeline for au-
tomated EMR consists of several key stages, supporting two
distinct prompting strategies: one-shot and RCI.

Preprocessed Python code and test cases are passed to the
Prompt Generator, which builds prompts using the chosen
strategy. One-shot uses a single template, while RCI maintains
history and iteratively incorporates feedback from prior test
failures to refine outputs. The prompt is sent to the LLM
inference module, which runs the benchmark models and
outputs a candidate refactoring. The Evaluator module checks
each candidate’s functional correctness by running its test
cases for behavioral equivalence. Candidates passing test cases
are then analyzed using metrics like CC and LOC. If tests fail,
handling depends on the prompting method. One-shot logs the
failure, while the RCI appends test feedback to the conver-
sation and retries, up to two attempts. Persistent failures are
marked as unsuccessful. The final outputs, including functional
correctness, code quality metrics, and, for selected samples,
qualitative assessments via a developer survey, form the basis
of our comprehensive evaluation.

B. Dataset Selection and Preprocessing

1) Dataset Used: We use a subset of the CodeNet dataset2

[41], a large-scale corpus of real code submissions collected
from competitive programming platforms, containing both
code and associated test cases. We used CodeNet because it
includes functionally correct solutions validated by problem-
specific test cases. Each problem provides the original code
and test inputs, allowing reliable post-refactoring correctness
checks. While other datasets for refactoring tasks exist, they
typically combine multiple types of refactoring, often applied
manually or semi-automatically, and may contain inconsisten-
cies or errors that make them less suitable for evaluating EMR
specifically. In contrast, CodeNet provides clean, executable,
and validated code fragments, enabling us to benchmark
Extract Method refactoring in a controlled setting without the
confounding factor of noisy or incorrect ground truth. The
dataset has been widely used in prior code generation and
refactoring studies, supporting reproducibility and comparison.

2) Problem and Sample Selection: From the full set of
Python problems (800), we filtered for those that: (a) have
a CC of three and sufficient length for EMR. The average CC
of the original code files selected is 4.602. (b) Provide at least
40 unique code submissions per problem.

For each of 21 problems, we sampled 40 diverse code
submissions (840 total). To reduce redundancy and include
both short and long solutions in our benchmark, we analyzed
the length distribution (LOC) and oversampled outliers using
Laplace smoothing with the following formula:

Psmoothed(x) =
f(x) + α

N + α · d

2https://github.com/IBM/Project CodeNet

where f(x) represents the frequency of the bin x, N is the
total number of files, α is the strength (hyperparameter), and
d is the number of bins. For our implementation, we set α =
5 to apply moderate smoothing, ensuring that rare solution
lengths are sufficiently represented without overly distorting
the empirical distribution.

Fig. 2: Code sampling distribution of a selected problem

As shown in Fig. 2, the distribution of the selected files was
more evenly distributed across different LOC sizes, covering
both large and small cases. After this step, we ended up with
40 samples instead of 300 per problem.

Preprocessing Steps:
(i) Scope Wrapping: Because Python code often has top-

level logic, we wrap global code in a synthetic func-
tion (wrapped artificially) to enable per-method metric
analysis (e.g., CC) while preserving scope. This ensures
consistent metrics and fair evaluation.

(ii) Deduplication: Samples with identical code after strip-
ping comments and whitespace are deduplicated.

(iii) Test Case Validation: Each sample’s test cases were
extracted and checked on the original code to confirm
baseline correctness.

C. Model Selection

We selected five state-of-the-art open-source LLMs with
manageable compute demands and permissive licensing (Ta-
ble I). All models run on a single NVIDIA Tesla V100 GPU
(16GB VRAM), reflecting realistic academic and industry
budgets and enhancing practical relevance.

TABLE I: Selected Models

Model Name Organization Param. Size
Qwen/CodeQwen1.5-7B-Chat Alibaba 7.2B

deepseek-ai/deepseek-coder-6.7b-instruct DeepSeek 6.7B
meta-llama/Llama-3.2-3B-Instruct Meta 3.2B
Qwen/Qwen2.5-Coder-7B-Instruct Alibaba 7.6B

microsoft/Phi-4-mini-instruct Microsoft 3.8B

D. Prompt Design

This study tests whether advanced prompting, specifically
RCI, yields better LLM-generated EMRs than standard one-

https://github.com/IBM/Project_CodeNet


System Prompt
You are an expert Python software engineer. When given
Python code and a request to perform Extract Method
refactoring, you will analyze the code and refactor it by
extracting a meaningful portion of the code into a new
function with an appropriate, descriptive name. Your
refactoring must preserve all original functionality and pass
the same tests as the original code. Only output valid,
executable Python code and do not provide any explanations
or comments.

User Prompt
Task: Extract Method Refactoring

Below is an example of Extract Method refactoring for Python
code.
Original code:
[Example Python code before Extract Method refactoring]
After Extract Method refactoring:
[Corresponding refactored Python code, with extracted
method and updated original function]

Now, please perform Extract Method refactoring on the
following code:
[Target Python code to be refactored]
Please output only the refactored Python code.

User Prompt
Task: Extract Method Refactoring

Please perform Extract Method refactoring on the following
code:
[Traget Python code to be refactored]
Please output only the refactored Python code.

Subsequent Iterations (RCI Loop)
The previous refactored code did not pass all test cases.
Here is the feedback from the test failures:
[Automated feedback, e.g., test failure messages or error
outputs]
Please revise your previous refactored code to address the
feedback, while continuing to use Extract Method refactoring.
Output only the updated, executable Python code.

One-Shot
Prompting

RCI
Prompting

Fig. 3: Prompting Templates Used

shot prompting. Both strategies were benchmarked on each
code sample.

(i) One-Shot Prompting: A single EMR example is pro-
vided to guide the model’s transformation, minimizing
complexity and inference time.

(ii) Recursive Criticism and Improvement (RCI): The
LLM’s refactoring is tested for correctness after each
attempt. If incorrect, targeted feedback based on test case
errors is added to the prompt, and the model tries again.
This process can repeat up to three times, simulating
iterative improvement.

Prompt templates were kept consistent across models with
minor syntax adjustments (see Figure 3 for examples). Models
were instructed to output only executable code, avoid expla-
nations, and limit changes to the EMR.

E. Evaluation

We use both quantitative and qualitative metrics to assess
the EMRs produced by each model and prompting strategy.

1) Quantitative Metrics: The following quantitative metrics
are computed for every code sample, model, and prompt type:

a) Test Pass Percentage: The proportion of refactored code
samples that pass all original test cases, measuring func-
tional correctness. TPP serves as the primary metric for
comparing models and prompt strategies head-to-head.

b) Lines of Code: The average lines per method in the refac-
tored code, reflecting modularity and potential readability
improvements. [21]–[24]

c) Cyclomatic Complexity: The maximum CC across
methods in the refactored code, used to assess the re-
duction of code complexity. [19]–[22]

We evaluate all three metrics for every model and both
prompting techniques (one-shot and RCI), providing a direct
comparison.

2) Qualitative Evaluation: To complement our quantitative
evaluation, we conducted a developer survey to assess the per-
ceived quality and acceptance of EMRs produced by the top-
performing models under RCI-based prompting. This survey
serves two purposes: (1) to identify which model’s refactorings
are most favored by human developers, and (2) to investigate
whether improvements in automated metrics (TPP, LOC, CC)
correspond to higher developer-perceived code quality.

Participants: Nine developers with backgrounds in software
engineering, data science, and machine learning engineering
participated in the survey. The participants varied in their years
of professional experience, ranging from 4 years to 8 years.

Survey Design and Scope: To keep the survey manageable
and avoid participant fatigue, each developer reviewed 20 code
samples covering five distinct problems. For each problem, we
presented four versions of the code:

a) The original (unrefactored) code sample
b) Three RCI-refactored outputs from the top-performing

models based on quantitative metrics (Qwen2.5-Coder,
DeepSeek-Coder, and CodeQwen1.5)

This design ensured that all developers assessed the same
five problems and the same model outputs for consistent and
comparable feedback.

Scoring and Statements: Ratings used a 5-point Likert
scale: Totally Disagree (-2), Disagree (-1), Neutral (0), Agree
(+1), and Totally Agree (+2). Developers rated each code
version according to the following five statements:

a) I can easily understand what this code does.
b) I feel comfortable to add new features to this code.



c) I can easily troubleshoot the errors and debug this code.
d) I would accept this refactoring if it was offered by an

agent. (refactored versions only)
e) Even if I do not accept this refactoring, I still find it

helpful. (refactored versions only)
Analysis: Ratings were mapped to their numeric weights

for each code sample and statement and aggregated across
all developers. For each model, a weighted sum provided an
overall qualitative score, with positive values indicating gener-
ally favorable developer opinions. Acceptance rates were also
computed for the statement, ”I would accept this refactoring
if it was offered by an agent.”

The survey took approximately 45 minutes per participant.
The results are used to compare qualitative model performance
and to analyze the alignment between improvements in quan-
titative metrics and developer judgments of refactoring quality.

IV. RESULTS

Our results section presents a comprehensive comparison of
five open-source LLMs and two prompting strategies on the
EMR task. To structure our analysis, we address the following
research questions:

RQ1 How do different open-source LLMs perform on Extract
Method refactoring?

RQ2 How does the prompting strategy (RCI vs. one-shot) af-
fect the quality and correctness of LLM-generated Extract
Method refactorings?

RQ3 Are code quality improvements, as measured by auto-
mated metrics (LOC, CC), meaningful in practice?

RQ4 Do quantitative metrics align with human developer judg-
ments of good refactoring?

We report both quantitative and qualitative findings to
systematically answer these questions, focusing on functional
correctness, code quality improvements, developer acceptance,
and the relationship between automated metrics and human
expectations.

A. Quantitative Results

To provide an overall comparison of model and prompt per-
formance, Table II summarizes the main quantitative metrics:
TPP, average LOC per method, and maximum CC, for each
approach. This table enables a direct side-by-side assessment
of functional correctness and code quality improvements re-
sulting from EMR across all evaluated models and prompting
strategies.

Test Pass Percentage: TPP is our primary metric for
assessing the functional correctness of LLM-generated EMRs.
TPP is defined as the proportion of generated refactorings for
which all test cases pass, ensuring functional equivalence with
the original code. This metric is critical: if the refactored code
is not functionally correct, improvements in other code quality
metrics are largely irrelevant.

We computed TPP for every model and both prompting
strategies (one-shot and RCI) across all 840 code samples.
Figure 4 shows the average TPP for each model and prompt
type. Figure 5 presents a breakdown of TPP for each individual

TABLE II: Quantitative Metrics per Approach Table

Approach EM TPP LOC CC
Original Samples - 12.103 4.602

CodeQwen-1.5-RCI 0.638 7.337 3.668
CodeQwen-1.5-Oneshot 0.503 7.119 3.671

Qwen2.5-Coder-RCI 0.808 5.577 3.294
Qwen2.5-Coder-Oneshot 0.722 6.320 3.344

Deepseek-Coder-RCI 0.829 6.192 3.453
Deepseek-Coder-Oneshot 0.743 5.827 3.411

Llama-3.2-RCI 0.366 8.181 2.940
Llama-3.2-Oneshot 0.336 5.801 2.870

Phi-4-RCI 0.579 6.287 3.278
Phi-4-Oneshot 0.462 6.652 3.317

Fig. 4: Test Pass Percentage for each Model

problem and model. This detailed view shows that specific
problems, such as p02684, p02685, and p02686, are complex
for all models: even the highest-performing models fail to
achieve a 50% pass rate on these tasks.

The results show a clear benefit for RCI prompting: all
models achieved higher TPP than one-shot, confirming the
value of iterative feedback for improving LLM reliability.
Gains were largest for high-performing models. Qwen2.5-
Coder and DeepSeek-Coder led with RCI TPPs of 80.8% and
82.9%, up from One-shot’s 72.2% and 74.3%, outperforming
all others. CodeQwen1.5 improved from 50.3% to 63.8%,
showing mid-tier models also benefit. The smallest models
(Phi-4, Llama3.2) remained below 60% TPP, with smaller
absolute gains, likely due to limited capacity.

To better understand the effect of iterative prompting, we
analyzed the distribution of successful refactorings across
RCI iterations for each model. We observed that most im-
provements occurred early: for instance, Qwen2.5-Coder and
DeepSeek-Coder, successfully refactored about 64% and 67%
of cases, respectively, in the first iteration, with a further 25%
and 30% corrected after the second. Importantly, even with this
simple capped budget, RCI delivered >10 percentage point



improvements in TPP, showing robustness across models. By
design, initial attempt of RCI is a zero-shot attempt, the
model is given only the task specification and target code
(no examples, no test-failure feedback). Zero-shot results were
consistently lower than both one-shot and RCI conditions, TPP
= 0.472 for CodeQwen-1.5, 0.686 for Qwen2.5-Coder, 0.706
for DeepSeek-Coder, 0.334 for Llama-3.2, and 0.427 for Phi-
4. Iterative feedback in subsequent RCI rounds raised these to
0.638, 0.808, 0.829, 0.366, and 0.579, respectively, confirming
that most of the observed gains originate from the feedback-
driven iterations rather than the initial attempt.

TPP Summary: RCI-based prompting consistently outperforms one-shot
prompting in functional correctness (TPP) across all models. The highest
reliability is achieved by Qwen2.5-Coder and DeepSeek-Coder, while
smaller models like Llama3.2 and Phi-4 lag behind, highlighting both the
importance of prompt strategy and model selection for effective EMR.

Lines of Code: LOC per method serves as an indicator of
the modularity achieved by EMR. As reported in Table II,
the original samples have an average LOC per method of
12.1. The best-performing approaches: Qwen2.5-Coder-RCI
(5.58) and DeepSeek-Coder-RCI (6.19) achieve more than
a 50% reduction in LOC compared to the original code.
Other models, such as CodeQwen1.5-RCI and Phi-4-RCI,
also demonstrate strong reductions, while Llama3.2 achieves
a more modest improvement.

However, the relation between LOC and functional correct-
ness is non-trivial. As visualized in Figure 6b, which presents
regression lines for TPP versus LOC for each model, there
is a clear trend: models with higher TPP also achieve lower
LOC, indicating that reliable refactoring is correlated with
improved modularity. Yet, some models (notably Llama3.2)
report low LOC values while also having poor TPP. This
is due to incomplete or trivial code generations that may
be short, but do not produce functionally correct solutions.
Therefore, as emphasized in the thesis, LOC should always
be interpreted alongside TPP: substantial reductions in LOC
are only meaningful if the code remains correct and passes all
test cases.

The results highlight that the most effective EMR, as
achieved by Qwen2.5-Coder and DeepSeek-Coder, balances
both high functional correctness and substantial modulariza-
tion of code.

LOC Summary: Effective EMR with top-performing models reduces
LOC per method by over 50%, and significant LOC improvements are
only meaningful when accompanied by high functional correctness.

Cyclomatic Complexity: CC measures the logical com-
plexity of code, with lower values indicating simpler and
potentially more maintainable functions. As shown in Table II,
the original code samples have an average maximum CC of
4.60. All models reduce this metric after EMR, with Qwen2.5-
Coder-RCI and DeepSeek-Coder-RCI achieving strong results
at 3.29 and 3.45, respectively. Interestingly, Llama3.2-Oneshot
and Phi-4-RCI report the lowest CC values (2.87 and 3.28),
but as with LOC, these models also produce many incomplete

or incorrect outputs, as indicated by their low TPP.
This nuanced relationship is visualized in Figure 6a, which

presents regression lines for TPP versus CC for each model.
The plot shows that the most meaningful reductions in CC
are achieved by models that also maintain high functional
correctness. Models with very low CC but poor TPP, like
Llama3.2, may achieve simplicity by oversimplifying code or
omitting logic, rather than through proper refactoring.

CC Summary: CC and TPP should always be considered together,
and the best-performing model (Qwen2.5-Coder-RCI) reduced average
maximum CC from 4.60 to 3.29 while maintaining the highest TPP.

B. Qualitative Evaluation

To capture human-centric perspectives on code quality, we
surveyed developers to assess the refactoring outputs of the
top three RCI-prompted models, analyzing perceptions of
Readability, Maintainability, and overall acceptability.

Nine developers with varied backgrounds and experience
levels participated in the survey, reviewing 20 code samples
each. For every sample, developers rated the original code
and three RCI-refactored versions. Figure 7 reports the mean
and standard deviation of developer ratings for each statement
and model, on a five-point Likert scale (from −2 = Totally
Disagree to +2 = Totally Agree). To assess the consistency
of human judgments, we computed the quadratic-weighted
Cohen’s κ across all rater pairs, obtaining an average κ ≈ 0.30,
with individual values ranging from 0.17 to 0.52 depending
on the survey statement. According to the Landis & Koch
scale, these levels correspond to fair-to-moderate agreement.
At the model level, κ ranged from 0.24 for Qwen2.5-Coder
to 0.34 for CodeQwen-1.5. These results indicate that, despite
some natural subjectivity, developer ratings were sufficiently
consistent to support our conclusions.

Results show that Qwen2.5-Coder achieves the highest
average scores for all statements, with relatively low standard
deviations indicating strong agreement among developers.
In contrast, the original code was consistently rated below
neutral, especially in statements related to Readability and
Maintainability.

Readability : The statement ”I can easily understand what
this code does” directly measures the perceived clarity of the
code. Qwen2.5-Coder achieved the highest average readability
score (1.18±0.50), closely followed by Qwen1.5 (1.00±0.60).
DeepSeek-Coder also performed positively (0.87±0.65), while
the original code was rated slightly below neutral (−0.13 ±
0.48). This demonstrates that when properly prompted, all top
LLMs produce refactorings that are easier for developers to
understand than the unrefactored code.

Maintainability : For Maintainability, the statements ”I feel
comfortable adding new features into this code” and ”I can
easily troubleshoot the errors and debug this code” were both
consistently rated higher for LLM-generated refactorings than
for the originals. Qwen2.5-Coder again led with means above
1.1 for both statements, while the original code lagged, with
average scores below zero.



Fig. 5: Problem-level Test Pass Heatmap

Acceptance and Practical Helpfulness: The strictest test
was the statement ”I would accept this refactoring if it was
offered by an agent.” Here, Qwen2.5-Coder still scored highest
(0.93 ± 0.65), though average ratings were lower than for
the readability and maintainability statements, highlighting
the more cautious stance developers may take toward fully
automated changes. Qwen1.5 and DeepSeek-Coder followed
at 0.49 and 0.29, respectively. Notably, all refactored outputs
were viewed as improvements over the original, as shown
by the generally positive mean values. Additionally, the more
forgiving statement ”Even if I do not accept this refactoring, I
still find it helpful” saw the highest scores overall, especially

for Qwen2.5-Coder (1.31± 0.58) and Qwen1.5 (1.29± 0.62).
This suggests that even when developers are not ready to
directly accept an LLM-generated refactoring, they still find
its output valuable as a starting point or inspiration for their
own edits.

Consistency and Variability: Standard deviations for all
models and statements were generally moderate (typically
in the range of 0.5–0.7), indicating reasonable agreement
among participants. Slightly higher variability was observed
for the more subjective acceptance questions, reflecting natural
diversity in developer trust and style.



(a) Regression Lines for TPP versus CC (b) Regression Lines for TPP versus LOC

Fig. 6: Regression Lines for TPP vs Quantitative metrics used

Fig. 7: Mean (Standard Deviation) of Developer Survey
Ratings per Model and Statement.

Likert scale: −2 = Totally Disagree, 0 = Neutral, +2 = Totally
Agree.

Qualitative Evaluation Summary: Qwen2.5-Coder’s RCI refactorings
scored highest in Readability, Maintainability, and acceptance, outper-
forming both the original code and other models. Overall, model refac-
torings were rated above original submissions, confirming the qualitative
benefits of LLM-based EMR.

C. Alignment Between Quantitative and Qualitative Results

A key research question in this study is whether improve-
ments in quantitative metrics, specifically TPP, LOC, and CC,
reliably reflect the code quality and acceptability perceived by
human developers.

For Qwen2.5-Coder, the relationship is clear and positive.
It achieved the highest TPP (0.808), the lowest average LOC
per method (5.58), and one of the lowest maximum CC values
(3.29) among all tested approaches, as shown in Table II. Cor-
respondingly, it received the highest mean developer ratings
across all qualitative survey statements, with an average score
of 1.18±0.50 for Readability and 0.93±0.65 for acceptance (”I
would accept this refactoring if it was offered by an agent.”).

However, for other models, the alignment is less straightfor-
ward. DeepSeek-Coder slightly outperformed Qwen2.5-Coder
in TPP (0.829 vs. 0.808) and had comparably low LOC and
CC (6.19 and 3.45, respectively), but its mean acceptance score
in the survey was only 0.29±0.73, noticeably lower than both
Qwen2.5-Coder and Qwen1.5 (0.49±0.72).

Qwen1.5, although having lower TPP (0.638) and higher
LOC (7.34) and CC (3.67), was more favorably rated by devel-
opers than DeepSeek-Coder. For instance, it scored 1.00±0.60
for Readability and 0.49±0.72 for acceptance, second only to
Qwen2.5-Coder.

Alignment Summary: While quantitative metrics provide valuable sig-
nals, they are insufficient substitutes for developer-centered evaluation
and can be misleading if used in isolation.

V. DISCUSSION

Our systematic evaluation of five open-source LLMs for
EMR demonstrates that model choice and prompting strategy
significantly affect both functional correctness and code qual-
ity.

LLMs’ performance on EMR: Our results reveal a varied
level of performance among open-source LLMs on the EMR
task. Qwen2.5-Coder and DeepSeek-Coder achieved func-
tional correctness (TPP) above 80% and consistently produced
more modular and less complex code. In contrast, smaller
models such as Llama3.2 and Phi-4 exhibited substantially
lower TPP and often failed to generate correct refactorings,
highlighting the critical importance of model selection in
practical automated refactoring scenarios.

Impact of Prompting Strategy: Prompting strategy had a
significant impact on both functional correctness and code
quality. Across all models, RCI-based prompting consistently
outperformed one-shot prompting, with average TPP improve-
ments of 8–14 percentage points depending on the model. RCI
prompting enabled iterative feedback and correction, resulting
in more reliable and robust refactorings. These findings un-
derscore that prompt engineering is a key factor in unlocking
LLM performance for software engineering tasks.



Are code quality improvements meaningful: Automated
metrics such as LOC and CC provide useful indications of
code modularity and complexity, but our results show they are
only meaningful when functional correctness is preserved. The
best models achieved both high TPP and substantial reductions
in LOC and CC, but some models achieved low complexity or
short code at the expense of correctness, producing results that
would not be acceptable to developers. This demonstrates that
automated code quality metrics must always be interpreted in
conjunction with functional validation.

Quantitative metrics-human judgements allignment: Our
developer survey shows that top models, notably Qwen2.5-
Coder, paired high quantitative scores with strong devel-
oper acceptance. In contrast, models like DeepSeek-Coder
achieved strong quantitative results but lower developer prefer-
ence. This misalignment highlights the need to combine human
feedback with automated metrics when evaluating LLM-driven
refactoring.

VI. THREAT TO VALIDITY

We acknowledge several potential threats and limitations
that might hinder the results achieved in this study:

Internal Validity: The RCI prompting approach uses au-
tomated test failures as feedback for language models, but
this may overlook nuanced or contextual guidance. While
the feedback loop is standardized to reduce bias and ensure
consistency, some error types may not be effectively addressed.
Future work should consider richer feedback, such as static
analysis, human critique, or natural language explanations.

External Validity: Our evaluation focuses on Python code
from the CodeNet dataset and uses only EMR. Since language
features vary, results may not generalize to other languages or
refactoring types. And the programs analyzed in this study are
relatively small, with a median size of approximately 30 lines
of code, as shown in Figure 2. This limited size may affect
the generalizability of the results to larger, more complex
programs. To address this, we selected diverse problems from
CodeNet covering a range of styles and complexities. The
human study, though carefully designed, involved nine devel-
opers and a fixed set of problems, limiting generalizability.
Participants had varied backgrounds and all assessed the same
problems to ensure comparability. Future work should scale
up with more developers, tasks, and languages.

Construct Validity: We use widely accepted automated met-
rics such as TPP, LOC, and CC, alongside a standard Likert-
scale developer survey to assess code quality and acceptance.
Survey statements were pilot-tested and refined for clarity.
However, it is possible that our chosen metrics and survey
items do not fully capture some important aspects of code
quality or developer preference.

Reproducibility: To facilitate replication and extension, we
will release our full evaluation pipeline, code, data splits, and
model configurations upon publication. This will allow other
researchers to apply our methodology to additional datasets,
languages, or refactoring tasks.

VII. FUTURE WORKS

Our study opens up several promising directions for further
research and improvement. While this work focuses on EMR
in Python, future studies should apply the benchmarking
framework to additional programming languages (such as Java,
C++, or JavaScript) and to a broader range of refactoring
operations. This would allow for more general conclusions
and reveal whether the strengths and weaknesses observed
in Python transfer to other language paradigms and code
structures.

Scaling up the developer survey, both in participant number
and problem diversity, would yield deeper insights into how
LLM-generated refactorings are perceived in practice. Incorpo-
rating qualitative interviews, open-ended developer feedback,
and longitudinal studies on code maintainability after auto-
mated refactoring could further enrich our understanding of
real-world impact.

Future work could explore more sophisticated forms of feed-
back in RCI prompting, such as static analysis hints, natural
language critiques, or brief human-in-the-loop interventions.
Evaluating how richer feedback improves LLM performance
or acceptance could lead to more effective and trusted refac-
toring agents.

Integrating LLM-based refactoring tools into development
environments (e.g., IDEs, CI/CD pipelines) and monitoring
their impact in live software projects provides evidence of
practical benefits and potential challenges. This could include
tracking developer acceptance rates, post-refactoring defect
rates, or productivity gains over time.

Continued expansion of code and refactoring benchmarks,
including more diverse codebases, more realistic enterprise
code, and additional test suites, would further validate the scal-
ability and robustness of both LLM and traditional approaches.

VIII. CONCLUSION

This paper evaluates open-source large language models
for automated EMR in Python, comparing five state-of-the-art
models and two prompting strategies. Our results demonstrate
that model selection and prompt engineering critically affect
functional correctness and code quality, with recursive criti-
cism and improvement (RCI) consistently outperforming stan-
dard one-shot prompting. The best-performing models, partic-
ularly Qwen2.5-Coder and DeepSeek-Coder, achieve high test
pass rates and meaningful code complexity and modularity
metrics reductions. Our qualitative developer survey reveals
that improvements in quantitative metrics do not always
align with developer acceptance or perceived code quality,
emphasizing the importance of human-centered evaluation
in automated refactoring research. Our findings show that
when properly guided, open-source LLMs can now produce
automated refactorings that are both reliable and acceptable
to developers. As automated code refactoring powered by
LLMs matures, integrating developer feedback and thoughtful,
prompt design will be key to building practical, trustworthy
tools for real-world software engineering.
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